Structure of the Tricyano Ion

ROGER L. DeKOCK and DEBRA S. CASWELL Department of Chemistry, Calvin College, Grand Rapids, Mich. 49506, U.S.A. Received June 20, 1979

In a recent study, Beck *et al.* report on the formation and stability of the tricyano ion, $(CN)_3^-$ [1]. The ion was detected spectrophotometrically by extraction of a cyclohexane solution of cyanogen with an aqueous sodium cyanide solution. Beck *et al.* comment that although the cyanide ion is a pseudohalide ion, the tricyano ion cannot be regarded as an analogue of the linear trihalogenide ions. This is readily recognized since a linear tricyano ion exhibits a positive formal charge on the centrally located nitrogen atom indicating a relatively unstable structure.

 $\ddot{N} = C = C = N = C = \ddot{N}$

We decided to investigate the relative stability of several possible structures of the tricyano ion using the MNDO molecular orbital method of Dewar and Thiel [2]. In addition we carried out calculations on the known isoelectronic carbonyl cyanide molecule, $(CN)_2CO$, in order to compare the calculated structure with the structure determined by microwave spectroscopy [3]. The calculations were carried out on the Prime 400 computer at Calvin College.

Results and Discussion

Calculations were carried out on carbonyl cyanide in C_{2v} symmetry. The computed and experimental structures are compared in Table I. The MNDO structure is practically identical to the experimental structure.

TABLE I. Computed	and Experimental	for Carbonyl Cyanide
in C _{2v} Symmetry.		

Structural Parameter	Computed	Experimental ^a
C-0	1.22 Å	1.22 Å
C–C	1.45 Å	1.45 Å
C-N	1.160 Å	1.165 Å
LCCC	115.13°	115.32°
LCCN	180.00°	180°

^aRef. 3. The CO length, CN length and CCn angle are assumed values.

Calculations were next carried out on the reactant molecules, CN^- and C_2N_2 . The total energy of CN^- was found to be -333.01 eV at an optimized CN

TABLE II. Optimized Structural Parameters and Total Energy for Four Structures of the Tricyano Ion.	TABLE II. Optimized Structural	Parameters and Total Energy	for Four Structures of	f the Tricyano Ion.
---	--------------------------------	-----------------------------	------------------------	---------------------

Structure	Spin Multiplicity	Total Energy (eV)	Structural Parameters (Å)
Linear C∞v	Triplet	-1001.41	$N\frac{1.18}{1.18}C\frac{1.31}{C}C\frac{1.24}{V}N\frac{1.27}{C}C\frac{1.18}{V}N$
			N /1.17
Bent C _s	Singlet	-1002.65	$N\frac{1.18}{1.18}C\frac{1.32}{C}C\frac{1.26}{N}N$
Triangular D _{3h}	Triplet	-999.80	r(CC) = 1.52 r(CN) = 1.20
C _{2v}	Singlet	-1003.25	$N = \frac{1.16}{C} \\ N = \frac{1.46}{C} \\ N = \frac{1.25}{C} \\ C = 111^{\circ} \\ C \\ N = \frac{C}{N} $

bond length of 1.178 Å. For linear C_2N_2 , the calculated structure was r(CN) = 1.161 (1.154) Å, r(CC) = 1.378 (1.389) Å. The numbers in parentheses are the experimental result [4]. The total energy of C_2N_2 was found to be -667.93 eV.

There are many different topologies and structures possible for the tricyano ion. We optimized the geometry for four different structures: linear $(C_{\infty v})$, bent (C_s), triangular CN groups (D_{3h}); and the C_{2v} structure corresponding to the structure of carbonyl cyanide. The optimized structural parameters and total energy values are given in Table II for these structures. The results indicate that the C_{2v} structure is the most stable; the calculated structure is very similar to that of carbonyl cyanide. The bent C_s structure is second in stability, and the $C_{\infty v}$ and D_{3h} structures are least stable. The stability of the C_{2v} structure is not surprising in view of the almost universal preference for the most electropositive atoms in a covalent molecule to occupy the most central positions [5]. Correspondingly, the most stable structure of the isoelectronic butatrienedione molecule, C_4O_2 , would undoubtedly be $D_{\infty h}$ with terminal oxygen atoms and a spin multiplicity of three [6]. It should be possible to test the correctness of the calculated structure of $(CN)_3^-$ by carrying out a matrix isolation reaction of cyanide ion and cyanogen using the method of Ault and Andrews [7].

Acknowledgment

The authors wish to thank Mr. Sam Anema of the Calvin College Computer Center for assistance with the operation of the MNDO computer program.

References

- 1 M. T. Beck, V. Gáspár and D. P. Goel, Inorg. Chim. Acta, 33, L147 (1979).
- 2 M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc., 99, 4899 (1977); W. Thiel, QCPE 11, 353 (1978).
- 3 R. M. Lees, Can. J. Phys., 49, 367 (1971).
- 4 G. Herzberg, "Electronic Spectra of Polyatomic Molecules', Van Nostrand Reinhold, New York, 1966, p. 615.
- 5 G. W. Schnuelle and R. G. Parr, J. Am. Chem. Soc., 94, 8974 (1972); B. M. Gimarc, J. Am. Chem. Soc., 92, 266 (1970); S. J. Harris, S. E. Novick, W. Klemperer and W. Falconer, J. Chem. Phys., 61, 193 (1974).
- 6 R. C. Haddon, Tetrahedron Lett., 37, 3897 (1972); L. D. Brown and W. N. Lipscomb, J. Am. Chem. Soc., 99, 3968 (1977).
- 7 B. S. Ault and L. Andrews, J. Chem. Phys., 63, 2466 (1975);
 B. S. Ault and L. Andrews, J. Chem. Phys., 64, 1986 (1976);
 B. S. Ault, J. Phys. Chem., 82, 844 (1978).